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[1] Multiple-scattering (a.k.a. ‘‘off-beam’’) lidar is an emerging technology in cloud
remote sensing. It delivers, as in classic lidar ceilometry, cloud base altitude but also the
cloud’s physical thickness H as well as its optical depth t (averaged over horizontal
scales on the order of H). The value of t in fact must lie beyond the range accessible by
standard (i.e., single-scattering/on-beam) lidar profiling, namely, up to 3–4. A refined
diffusion-theoretical model is presented here for signals from multiple-scattering lidar and
applied, on the one hand, to retrieval algorithm development and, on the other hand,
signal-to-noise ratio (SNR) estimation. SNRs are computed for LANL’s ground-based
Wide-Angle Imaging Lidar (WAIL) system and NASA’s space-based Lidar-In-space
Technology Experiment (LITE). The refinements are threefold and all about internal
structure. First, the laser source is modeled as a collimated anisotropic exponentially
distributed internal source rather than an isotropic point source at the cloud boundary; this
opens the possibility of using d-Eddington rescaling to capture the forward peaked phase
function more effectively within the diffusion framework. Second, stratification of the
scattering coefficient is modeled as an increasing function of distance to cloud base; this
strongly differentiates the signals when observed from above or from below. Finally,
Cairns’ rescaling is applied to this conservative scattering problem to account for the
systematic effects of random (turbulence-driven) internal variability at scales up to a few
mean free paths.

Citation: Davis, A. B. (2008), Multiple-scattering lidar from both sides of the clouds: Addressing internal structure, J. Geophys. Res.,
113, D14S10, doi:10.1029/2007JD009666.

1. Motivation, Context, and Outline

[2] It is commonplace to say that getting clouds right is
an essential step in predictive climate science at both
regional and global scales, for both near- and long-term
forecasts. They are obvious elements in the radiation budget
and hydrological cycle. They also participate actively in
atmospheric aerosol processes, including their intricate
chemistry in the aqueous phase as well as reactions on the
surfaces offered by cloud particles [Ghan and Schwartz,
2007]. It is not as frequently voiced that clouds remain a
significant challenge in remote sensing, and remote sensing
is the only way we can assess them statistically with
reasonable space-time sampling. As much as one would
like to view clouds as known (or at least readily knowable)
quantities, efforts with national and international reach such
as DOE’s Atmospheric Radiation Measurement (ARM)
program are predicated on the fact that we need to improve
our knowledge and understanding of clouds. In recent years,
it has become clear that possibly the strongest, and certainly
the most uncertain, impacts of anthropogenic aerosol on
the climate are mediated one way or another by clouds

[Solomon et al., 2007]. The aerosol-cloud-radiation-climate
problem indeed motivated much of Yoram Kaufman’s
scientific work and dominates this special section of Journal
of Geophysical Research–Atmospheres.
[3] Even though they are zeroth-order, questions about

where we locate cloud boundaries, and the associated issue
of cloud fraction, are already difficult. Part of this difficulty
is that the answer depends inherently on the observational
approach. And it should! Indeed, the spatial transition from
clear to cloudy air is made fuzzy by nature herself through
the complex interplay between advective and convective
dynamics, thermodynamics, nucleation, turbulence, radia-
tion, and so on, as any cloud modeler is well aware. It is
therefore important to decide what instrumentation is best
adapted to a given application that requires knowledge of
cloud boundaries. This recommendation still stands when
one asks the first-order question about what is going on
inside the cloud boundaries in terms of instantaneous
distributions of liquid and ice water content.
[4] Only after a cloud probing technique is selected, can

one start meaningful discussions about precision, accuracy,
robustness, reliability, sampling, etc. For instance, if climate
modeling is the primary goal, then it is probably best to use
remote sensing instrumentation that operates at wavelengths
that matter most for the radiation budget; otherwise, a
theory-based extrapolation across the EM spectrum is in
order and this adds a vulnerability to the climate model.
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Although there are many good reasons to invest large
resources into radar and microwave technologies [e.g.,
Stephens, 1994], it is also important to keep working on
passive and active techniques in the VIS through thermal IR
region of the spectrum. Ultimately, we must recognize that,
since different instruments ‘‘see’’ clouds differently, com-
prehensive observation of clouds for multiple purposes
mandates multi-instrumental synergy and, if necessary,
cloud data fusion.
[5] In this paper and its companion (A. B. Davis et al.,

Multiple-scattering lidar from both sides of the clouds:
LITE from above, WAIL from below, manuscript in prep-
aration, 2008, hereinafter referred to as Part 2), we revisit
active remote sensing in the optical (VIS and Near-IR)
spectrum, i.e., lidar, from a cloud perspective. The attending
radiative transfer (RT) is dominated by scattering and the
fundamental radiation transport physics will range from a
ballistic/single-scattering regime to slow diffusion through
extended regions where opacity is high, hence mean free
paths (MFPs) are small. So far, atmospheric lidar has
assumed the former situation. So much so that the famous
‘‘lidar equation’’ which predicts the lidar signal for a given
atmospheric profile is an expression of two-way direct
transmission and a single scattering through 180! (we
assume here a so-called monostatic configuration where
the transmitter and receiver are side by side, or even
integrated as in micropulse lidars [Spinhirne, 1993]). In
this case, the main constraint on the optical design is that the
detector field of view (FOV) should contain all of the laser
beam at all the ranges of interest; otherwise an ‘‘overlap
function’’ must be determined and applied (at the cost of
lost signal). Consequently, standard lidar FOVs are quite
small, commensurate with the (typically diffraction-limited)
divergence of the laser beam, on the order of a few mrad.
For obvious reasons, this type of propagation will only cross
the most tenuous clouds and penetrate only the first layers
of their dense counterparts.
[6] We explore here the opposite asymptotic limit of RT

where the lidar signal is dominated by beams energized by
the multiple scattering source function. Once the cloud
boundary nearest to the pulsed laser source is detected
and ranged, this new signal modeling framework has no
place for the ranging part of LIDAR (Light Detection and
Ranging). However, it opens up new opportunities for cloud
probing all the way to the nonilluminated boundary which
may be very many MFPs away from the laser source. See
schematic in Figure 1. In this scenario, the main constraint
on the optical design is that the receiver FOV should
contain as much as possible of the spatial pattern of
reflected light excited by the laser beam. It has been shown
theoretically [Marshak et al., 1995] and observationally
[Davis et al., 1997] that, in reflection, the root-mean-square
(RMS) radius of this radiative Green function is commen-
surate with the harmonic mean of the cloud thickness H,
!km, and the ‘‘transport’’ MFP ‘t,!100 m. (‘t and H are the
natural inner and outer scales of diffusion theory. Letting g
be the asymmetry factor and t the cloud optical depth, their
ratio is (1 " g)t and we can moreover take g # 0.85 for all
clouds of interest here.) We are thus contemplating an RMS
radius of !0.3 km and a FOV that captures at least one full
kilometer at cloud level; at typical ranges fromground,!1 km,
this can translate to !1 radian, preferably even more.

[7] Curiously, multiple scattering in space-based lidar
observations of clouds elicited strong interest [Flesia and
Schwendimann, 1995; Miller and Stephens, 1999] before the
same signal physics was investigated systematically for
systems at much closer range to the cloud, either ground-
based [Davis et al., 1999; Love et al., 2001a; Polonsky et al.,
2005] or airborne [Cahalan et al., 2005]. A novel and
interesting development is the idea that themultiple-scattering
lidar system can be embedded in the cloud [Evans et al.,
2003, 2006]. Originally, multiple scattering in lidar was
generally viewed as a nuisance, and compensation method-
ology was developed to restore the utility of the single-
scattering lidar equation. As far as we know, the first thrust
in signal modeling and instrument development based on
the notion that the multiple scattering component of the
lidar signal can be useful was advanced by Bissonnette et al.
[2002, and references therein] and described as ‘‘Multiple
Field-Of-View’’ (MFOV) lidar; apart from standard ranging
and quantifying aerosol density fluctuations, MFOV gives
access to information on particle size distributions.
[8] To summarize, lidar is generally viewed as a mature

technology addressing the atmospheric aerosol with unprec-
edented spatial and temporal detail, and now organized into
growing networks in Europe, North and South America, and
Asia that will in time be federated into a global network of
networks. This growth and effort in standardization will
lead to lidar data assimilation into NWP, regional and global
transport studies, improved air quality forecasts, and so on.
The new class of cloud-probing instruments supported by
the present modeling study are bridging the gap between
aerosol and clouds using the very same wavelengths and
closely related detector physics. Conceivably, lidars with
dense cloud capability will populate the same networks
worldwide, capitalizing on the same investment in infra-
structure; in some cases, the same transmitter may be used
and only an extra detector will be added at a relatively low
cost. In time, this kind of sensor development will help to
bring on the scientific breakthrough we need to fully
understand cloud-aerosol interaction. Active probing of
both atmospheric components of the climate system with
essentially the same instrumentation, the only difference
being in the data collection and analysis, is a step in the
right direction.
[9] The paper is dedicated to the forward modeling of the

multiple-scattering lidar (MSL) signal using every resource
radiative diffusion theory can bring to bear. In the following
section, we review the rigorous time-dependent 3-D RT
theory that supports MSL concepts in dense cloud remote
sensing, up to the definition of space-time moments that
play a key role in MSL signal phenomenology. In section 3,
we establish a general diffusion-theoretical framework for
multiple-scattering cloud lidar signal prediction. In section 4,
we present diffusion results using a new and improved
representation of the pulsed laser source, now as a an internal
distribution with the full degree of anisotropy allowed in
diffusion theory; for illustration, we apply it to a moment-
based retrieval scheme. In section 5, we introduce two new
cloud parameters (beyond H and t) that describe internal
cloud structure: one describes a macroscale gradient in
opacity from bottom to top, and the other [adapted from
Cairns et al., 2000] describes microscale random variability.
In section 6, we apply this body of theory to the estimation of
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the raw MSL signal magnitude, and associated noises, for
two radically different multiple-scattering cloud lidar sys-
tems. We summarize our results in section 7.

2. Preliminary Radiative Transfer and
Probability Theory
2.1. A New Lidar Equation

[10] A pulsed laser is for all practical purposes a physical
instantiation of a Dirac d source of illumination in time t, 3-D
space r, propagation direction W, as well as wavelength and
possibly even polarization. By definition, the radiation field
it excites is therefore a Green function G(t, r, W), the
governing time-dependent 3-D RT equation being

c"1 @

@t
þW %rþ s zð Þ

! "

G ¼ ss zð Þ
Z

4p

p W0 %Wð Þ

% G t; r;W0ð ÞdW0 þ Q t; r;Wð Þ; ð1Þ

where we balance sinks on the left-hand side (LHS) and
sources on the right-hand side (RHS) for the time-dependent

radiance field in a small volume along beam direction W.
From left to right, we recognize the negative imprints of
advection (total derivative c"1@t + W % r) and extinction,
and positive counterparts for in-scattering and volume
emission. Scattering and extinction coefficients are denoted
ss(z) and s(z) respectively and assumed to vary only in the
vertical, but maintaining a constant ratio v0. The scattering
phase function p(W0 % W) is assumed axisymmetric (we will
not concern ourselves here with cirrus) and spatially
uniform. The complementary coefficient, sa(z) = s(z) "
ss(z) = (1"v0)s(z), captures absorption processes as needed.
As in most atmospheric RT texts, we denote W(q, f) =
(hcosf, hsinf, m)T in Cartesian coordinates using polar
angles, where m = cosq and h =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1" m2
p

.
[11] We can assume no incoming radiance at the cloud

boundaries and model the laser source internally as

Q t; r;Wð Þ ¼ Ep d xð Þd yð Þd t " z=cð Þ ss zð Þp mð Þ

% exp "
Z

z

0

s z0ð Þdz0
0

@

1

A; 0 < z < H ; ð2Þ

Figure 1. Lidar observation of a dense cloud. Standard (single-scattering/on-beam) lidar is illustrated on
the left, and multiple-scattering/off-beam lidar is illustrated on the right. We note the narrowness of the
FOV in the standard case, as is required to restrict as much as possible the signal to a single backscatter,
and the very wide FOV in the case of off-beam lidar, designed to capture all orders of scattering in the
reflected laser light.
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assuming vertical (z axis) beam alignment, a plane-parallel
cloud of thickness H at right angles, and total pulse energy
Ep. Note from the writing of the third d function that the
instant t = 0 is when the laser pulse hits the cloud boundary
at z = 0, precisely at x = y = 0. In this case, the direct beam is
treated separately from the diffuse radiance field. Only the
later is of interest in lidar on the detection side.
[12] Alternatively, we can set Q(t, r, W) ) 0 and model

the highly directional laser source in the explicit statement
of boundary conditions (BCs):

G t; x; y; 0;Wð Þ ¼ Epd tð Þd xð Þd yð Þd W" ẑð Þ; m > 0;

G t; x; y;H ;Wð Þ ¼ 0; m < 0: ð3Þ

where ẑ orients the positive z axis. In this case, the resulting
radiance field contains both direct and diffuse components.
Apart from this interpretation ofwhat is contained inG(t, r,W)
or not, the two ways of modeling the pulsed laser source are
equivalent. Either way, we have now entirely determined
the radiation transport in MSL.
[13] However, in this particular application, we are only

interested in the reflected diffuse field at the illuminated
boundary: G(t, x, y, 0, W), when Wz = m < 0. More precisely,
we assume an imaging detector is measuring this radiance at
some finite standoff distance dobs > 0 from the illuminated
cloud boundary; that is, the MSL sensor is positioned at
robs = (0, 0, "dobs)

T. We denote the time-dependent cloud
response at the detector I(tround-trip, qobs) where, by axial
symmetry around the laser beam, we have no dependence
on the azimuthal angle. From this vantage point, we
subsample the axisymmetric boundary Green function for
boundary illumination, G(t, x, y, 0, W) ) G(t, r, 0, Wobs(r))
where

t ¼ tround"trip " 1þ 1= cos qobsð Þdobs=c;
r qobsð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

¼ dobs tan qobs;
hence; qobs rð Þ ¼ tan"1 r=dobsð Þ;
and Wobs rð Þ ¼ " sin qobs rð Þ; 0;" cos qobs rð Þð ÞT:

ð4Þ

We assume here, for simplicity, that radiance is sampled in
the y = 0 half-plane with r = x * 0 (f = 0). By deriving
I(tround-trip, qobs(r)) from G(t, r, 0, Wobs(r)) and dobs < 1
using (1) and (4), with either (2) or (3) to describe the
source, we have completely specified the new lidar equation
for multiple-scattering systems in the framework of RT
theory.
[14] To illustrate this point with standard/on-beam lidar,

we compute only the single-scattering term; using (2) and
the well-known propagation kernel for (1), we have

I1 t þ 2dobs=cð Þ ¼
Z

þ1

"1

Z

þ1

"1

Z

H

0

Q t; x; y; z;"ẑð Þ

%
exp "

R

z

0

s z0ð Þdz0
$ %

zþ dobsð Þ2
dxdydz;

¼ Ep css zð Þp "1ð Þ
exp "2

R

z

0

s z0ð Þdz0
$ %

zþ dobsð Þ2

&

&

&

&

&

&

&

&

z¼ct

; ð5Þ

for a uniform medium. The exponential term decays very
rapidly over a few MFPs (recalling that 1 MFP = 1/s), and
therein is the limitation of penetration by standard lidar into
dense clouds. In MSL, by contrast, we are interested in the
full solution of the 3-D RT equation.
[15] In the limit dobs ! 1, a reasonable approximation

for an orbital detector, the connections in (4) still make
sense by taking the simultaneous limit qobs ! 0, keeping r
constant. We thus denote the detector response as I(t, r),
after accounting for the large but finite time delay, and the
last connection simplifies to Wobs(r) ) "ẑ.

2.2. Spatial and Temporal Moments

[16] To summarize the above, we need to obtain from
theory, computation, remote lidar measurements, or some
combination of the above, the time-dependent axisymmetric
(equivalent) reflectance field Robs(t, r) = pG(t, r, 0,
Wobs(r))/Ep, which is normalized by the pulse energy.
Temporarily ignoring angular sampling and truncation
issues in real measurements, we define

R t; rð Þ ¼ 2p
Ep

Z

p

p=2

j cos qjG t; r; 0;W q; 0ð Þð Þ sin qdq; ð6Þ

as the local time-dependent reflected flux field.
[17] Largely to improve the signal-to-noise ratio (see

section 6), it is of interest to use spatial and/or temporal
integrals of the observed R(t, r). We are particularly
interested in its statistical moments when it is viewed as a
probability density function (PDF) for escape in reflection.
We will therefore estimate:

R ¼ 2p
Z

1

0

dt

Z

1

0

R t; rð Þrdr; ð7Þ

the cloud’s albedo (for steady, uniform and normal
illumination), and moments

ht qi ¼ 2p
R

Z

1

0

t qdt

Z

1

0

R t; rð Þrdr q ¼ 1; 2; . . .ð Þ; ð8Þ

hr2i ¼ 2p
R

Z

1

0

dt

Z

1

0

r2R t; rð Þrdr: ð9Þ

Angular brackets will always denote an average over space
and/or time.
[18] Note that the moment estimations in (9)–(8) are

immune to uncertainties in a multiplicative constant for
R(t, r). From an observational standpoint, and in sharp
contrast with the estimation of cloud albedo in (7), absolute
calibration is not required. But the easier task of flat-fielding
of the imager’s focal plane array is necessary.
[19] Of course, real-world MSL observations give us no

information on G(t, r, 0, Wobs(r)), hence on R(t, r), outside
of the receiver’s FOV (i.e., the actual upper limit of all the
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above integrals over r is finite). Moreover, for each value of
r we only get one value of q in (4). The latter problem is
resolved by using an angular model to convert an observed
radiance into a boundary flux. The former problem is best
addressed by designing MSL instruments with the widest
possible FOV, such that it contains at least a couple of the
Green function’s e-folding distances away from the axis; we
can then assume that the residual truncation in both numer-
ators and denominators in (9)–(8) does not bias the esti-
mates. We return to these two observational issues
respectively in sections 3.3 and 6.1.

2.3. Moment Estimation in Fourier-Laplace Space

[20] Moment integrals in (8)–(9) are easy to compute by
manipulation of transforms in Fourier-Laplace space. In
probability theory, the Fourier or Laplace transforms of a
PDF is called its ‘‘characteristic’’ or ‘‘moment-generating’’
function. Which transform is used depends on the support of
the PDF. In our application, we need both Laplace for time
t 2 [0, 1) and 2-D Fourier for position~r = (x, y)T 2 R

2 in
the z = 0 plane.
[21] We are thus interested in

~R s;~k
' (

¼
Z

1

0

dt

Z

þ1

"1

Z

þ1

"1

exp "st þ i~k %~r
' (

G t;~r; zð Þ dxdy

¼ R+ hexp "st þ i~k %~r
' (

i ð10Þ

for the time-dependent 2-D reflectance field. It is not hard to
see that coefficients of Taylor expansions of ~R(s,~k) at s = 0
and ~k = ~0 can be used to compute spatial and temporal
moments. By translational and rotational symmetries that
carry over from physical to Fourier space, we have ~R(s,~k) )
~R(s, k) and, specifically, we need to compute albedo R =
~R(0, 0), as well as moments

ht qi ¼ 1

R
" @

@s

$ %q

~R

&

&

&

&

s¼0;k¼0

; q ¼ 1; 2; . . .ð Þ; ð11Þ

hr2i ¼ "2

R
" @2~R

@k2

&

&

&

&

s¼0;k¼0

: ð12Þ

3. A Diffusion-Based Framework for MSL Signal
Prediction

[22] We still need a physically reasonable theory for R(t,
x, y) ) R(t, r) or, equivalently, ~R(s, k) in order to use the
above definitions and relations that predict the multiple-
scattering cloud lidar signal and derived moments.

3.1. Simplified Transport Equations

[23] Now consider dense clouds, say, through which one
cannot detect the silhouette and maybe not even the general
direction of the sun in the transmitted radiance field.
According to Bohren et al. [1995], this means optical
thickness t in excess of 8–10. We can safely assume that
such light is transported via diffusion, the well-known
approximation to RT per se. In other words, all is as if

photons detected in transmission or reflection were particles
executing typically long convoluted random walks starting
at the localized and collimated source and ending at a cloud
boundary.
[24] A classic approach to diffusion theory (a.k.a. ‘‘P1’’)

is to truncate the spherical harmonic expansion of the Green
function radiance field at order one:

G t; r;Wð Þ # J t; rð Þ þ 3W % F t; rð Þ½ -=4p ð13Þ

where we denote the zeroth- and first-order angular moments
as

J t; rð Þ ¼
Z

4p

G t; r;Wð ÞdW; F t; rð Þ ¼
Z

4p

WG t; r;Wð ÞdW; ð14Þ

respectively, the scalar (a.k.a. actinic) flux and vector flux.
Accordingly, one assumes

p W %W0ð Þ # 1þ 3gW %W0½ -=4p ð15Þ

for the phase function where g is the asymmetry factor
(mean value ofW %W0). We note from the onset that (15) is a
poor representation of the phase function of cloud droplets,
most notably, the forward diffraction-induced peak is
absent. By the same token, (13) is a poor representation of
radiance anywhere near the highly collimated laser beam.We
will treat these obvious problems separately further on, and
thus improve the accuracy of the diffusion model in MSL.
[25] After substitution of (13) and (15) into (1), equations

for this simplified transport theory are derived by angular
integration term by term over 4p, once directly, and once
after multiplication by W [Case and Zweifel, 1967]:

1

c

@J

@t
þr% F ¼ "sa zð ÞJ þ qJ t; rð Þ; ð16Þ

1

c

@F

@t
þrJ=3 ¼ "st zð ÞFþ qF t; rð Þ: ð17Þ

In (17), a new and important coefficient appears: ‘‘trans-
port’’ extinction,

st zð Þ ¼ 1" gð Þss zð Þ þ sa zð Þ ¼ 1"v0gð Þs zð Þ; ð18Þ

where v0 = ss(z)/s(z) is the previously introduced single-
scattering albedo (assumed constant here). The transport
MFP ‘t mentioned in the introductory section is given in
terms of local variables by 1/st(z). As in (14), we define

qJ t; rð Þ ¼
Z

4p

Q t; r;Wð ÞdW; qF t; rð Þ ¼
Z

4p

WQ t; r;Wð ÞdW: ð19Þ

[26] The ‘‘continuity’’ equation for radiant energy (16) is
exact. Its counterpart for momentum in (17) is where the
effect of the order-one truncation is felt, and it is further
simplified by neglecting the time derivative. We thus obtain
the ‘‘constitutive’’ equation:

F ¼ "1

3st zð Þ rJ þ qF t; rð Þ=st zð Þ; ð20Þ
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a.k.a. Fick’s law (especially when the last term is absent).
This finalizes the local formulation of generic time-
dependent 3-D diffusive transport theory.
[27] Photons produced by a doubled Nd:YAG laser, a

staple of atmospheric lidar, have a wavelength of 532 nm at
which water, condensed or not, has negligible absorption
(sa = 0, ss = s,v0 = 1) and, as previously mentioned, phase
functions for observed droplet size distributions in warm
boundary layer clouds yield g # 0.85 with remarkably small
variability [Gerber et al., 2000]. The continuity equation
(16) thus becomes

1

c

@J

@t
þr% F ¼ qJ t; rð Þ; ð21Þ

a local expression of radiant energy conservation.
[28] For the MSL problem, when treated with separation

of direct and diffuse components, (2) yields

qJ t; rð Þ ¼ Epd xð Þd yð Þd t " z=cð Þss zð Þe
"
R

z

0

s z0ð Þdz0

;

qF t; rð Þ ¼ qJ t; rð Þ + g ẑ: ð22Þ

3.2. Boundary Conditions

[29] If the cloud is reasonably stratiform and at least
horizontally uniform, we can model it in slab geometry
{r 2 R

3; 0 < z < H}, and we recall that in this plane-parallel
geometry cloud optical depth t is the integral of s(z) from 0
to H. Expression of BCs for the above coupled PDEs for
J and F then call for hemispherical fluxes crossing a
constant-z plane in the ± directions, namely,

F. ¼
Z

þp

"p

df
Z

.1

0

G %;Wð Þmdm ¼ J=2. Fz

2
; ð23Þ

using (13). The ‘‘no incoming radiance’’ (a.k.a. ‘‘absorbing’’)
BCs for radiance bring us flux-based BCs

4Fþ t; x; y; 0ð Þ ¼ J t; x; y; 0ð Þ þ 2Fz t; x; y; 0ð Þ ¼ 0;

4F" t; x; y;Hð Þ ¼ J t; x; y;Hð Þ " 2Fz t; x; y;Hð Þ ¼ 0; ð24Þ

for all x, y, and t.
[30] Alternatively, but not equivalently in the present

diffusion approximation, one can put the source in the
BCs. In this case, we set qJ = qF ) 0 in the RHS of
(20)–(21) and require that

4Fþ t; x; y; 0ð Þ ¼ J t; x; y; 0ð Þ þ 2Fz t; x; y; 0ð Þ ¼ 4q0 t; x; yð Þ
ð25Þ

for a general distribution of isotropic sources at z = 0, in lieu
of (24). The postulated boundary source q0(t, x, y) is the m-
weighted angular integral over m > 0 of the incoming
radiance field at z = 0. In MSL, the radiance BC at z = 0 in
(3) yields

q0 t; x; yð Þ ¼ Epd xð Þd yð Þd tð Þ; ð26Þ

and the homogeneous BC at z = H is unchanged. Note that,
since flux alone tells us nothing about directionality, we are
now effectively modeling the source as point-wise and
pulsed but isotropic in the m > 0 hemisphere.
[31] Equations (24) and (25) express the least usual

(third) type of BCs that occur in generic applications of
diffusion-type PDE problems, both time-dependent (para-
bolic) or steady state (elliptical): they involve the density J
at the boundary and the boundary crossing current Fz,
equivalently, J and its normal derivative of J from (20).
BCs can thus be expressed as a variable mixture of
Dirichlet/first-type (fix J) and Neumann/second-type (fix
Fz) BCs:

J t;~r; 0ð Þ þ 3cFz t;~r; 0ð Þ ¼ 4q0 t;~rð Þ
J t;~r; 0ð Þ " 3cFz t;~r;Hð Þ ¼ 0: ð27Þ

Although often referred to as ‘‘mixed’’ BCs, these are
known technically as ‘‘Robin’’ BCs [Eriksson et al., 1996].
At any rate, they are the most general BCs we will need to
consider in MSL signal modeling.
[32] When q0(t,~r) does not vanish, the BC mixing factor

c can differ from its 2/3 value in (25), but typically not very
much (at least in the most common transport applications).
This is basically a tuning parameter that was introduced by
early neutron transport theorists [e.g., Davison, 1958] to
help diffusion theory reproduce high-precision solutions of
the transport equations in critical applications; this boost in
accuracy is naturally applied where diffusion is at its
weakest, namely, boundaries. The physical interpretation
of c is that of an ‘‘extrapolation length’’ measured in
transport MFPs. Indeed, in the absence of anisotropic
internal sources, (20) tells us that Fz(t, ~r,0) = "[@zJ/
3st(z)]z=0, and similarly at z = H. By substitution into
(27), the LHS reads as a linear extrapolation formula for
J, given its derivative along the z axis, over a distance c/
st(0) into the z < 0 region; we have a similar reading of the
BC at z = H going into the z > H region.

3.3. Fields Observable With MSL

[33] The quantity of prime interest in MSL is local/
instantaneous reflectivity, i.e., the outgoing flux normalized
by total energy:

R t; x; yð Þ ¼ F" t; x; y; 0ð Þ
Etot

¼ J t; x; y; 0ð Þ=2" Fz t; x; y; 0ð Þ
2Etot

ð28Þ

where Etot is the space-time integral of qJ(t, r). Invoking the
BC at z = 0 in (24), we can express this basic cloud response
simply as

R t; x; yð Þ ¼ J t; x; y; 0ð Þ
2Etot

: ð29Þ

If the isotropic boundary source model in (27) is used for
the BCs, then J and F necessarily contain the incident flux.
We must therefore compute the required space-time
reflectivity field in (28) from

R t; x; yð Þ ¼ F" t; x; y; 0ð Þ
Etot

¼ J t; x; y; 0ð Þ " 2q0 t; x; yð Þ
2Etot

ð30Þ
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where Etot is defined as in (28) but for q0(t, x, y), hence
without integrating over z.
[34] Finally, we recall that at cloud boundaries (and

elsewhere) diffusion theory only predicts flux. A zeroth-
order estimate of cloud-leaving radiance is given by R(t, x,
y)/p, a Lambertian assumption which is not unreasonable
for highly scattered light. A first-order angular model will
use (13). This radiance-to-flux conversion can be done with
better angular models, and should be for actual cloud
remote sensing applications [cf. Polonsky et al., 2005].
[35] Determination of the new lidar equation within the

diffusion approximation, as formulated in the space-time
domain, is now complete. Moreover, several options are
available to control its degree of fidelity in source repre-
sentation.

3.4. Formulation in Fourier-Laplace Space

[36] Fourier-Laplace transformation of the PDE system in
(16) and (20), with BCs (24) or (25), leads to a class of
analytically tractable problems for our representations of
pulsed laser sources in the case of either constant coeffi-
cients, or simple enough variability models.
[37] Letting r = (x, y, z)T = (~r, z)T, we define

~J s;~k; z
' (

¼
Z

1

0

dt

Z

þ1

"1

Z

þ1

"1

exp "st þ i~k %~r
' (

J t;~r; zð Þ d~r x; yð Þ:

ð31Þ

We similarly transform all the components of F(t, ~r, z),
yielding ~F(s,~k; z). We can now think of (s,~k) as parameters
rather than independent variables, hence the ‘‘;’’ separator.
[38] Furthermore, let F = (~Fh, Fz)

T, similarly for qF, and
we recall that r = (@/@~r, @/@z)T transforms to (i~k, d/dz)T.
Because of the axial symmetry of the source (~Fh ) ~0), the
(vector + scalar) PDE system in (20)–(21) reduces to two
coupled 1D ODEs:

~J 0=3 ¼ "st zð Þ~Fz þ ~qFz; ð32Þ

~F 0
z ¼ " s

c
þ k2

3st zð Þ þ sa zð Þ
$ %

~J þ ~qJ : ð33Þ

The latter ODE is and expression of energy conservation
(with transport) along the z axis where local time variation
and horizontal divergence of J are recast as ‘‘effective’’
absorption processes:

s eð Þ
a s; k; zð Þ ¼ s=cþ k2=3st zð Þ: ð34Þ

This is a key coefficient that, in general, is stratified
differently than sx(z) (x = s,a,t), which all vary together (v0

and g being assumed constant).
[39] From (22), Fourier-Laplace transformed internal

source terms used in MSL are

~qJ s; kð Þ ¼ Epss zð Þe" s=cð Þz"
R z

0
s z0ð Þdz0 ; ~qFz s; kð Þ ¼ g + ~qJ s; kð Þ;

ð35Þ

independent of k.

[40] The general BCs in (27) become

~J s; k; 0ð Þ þ 3c~Fz s; k; 0ð Þ ¼ 4~q0 s; kð Þ; ð36Þ

~J s; k; 0ð Þ " 3c~Fz s; k;Hð Þ ¼ 0; ð37Þ

where ~q0(s, k) ) 0 and c = 2/3 if the distributed internal
source model in (35) is used. If the boundary point source
model is used, q0(t, x, y) in (26) leads to ~q0(s, k)) Ep in (36).
[41] We recall finally that, inmultiple-scattering cloud lidar,

our interest is limited to ~R(s, k) = ~J (s, k; 0)/2Ep or, when using
the boundary source option, [~J (s, k; 0) " 2~q0(s, k)]/2Ep.

4. Laser Source as a Collimated Beam Decaying
Exponentially Inside the Cloud
4.1. Forward Model for MSL Observables

[42] In this first application of the general diffusion
framework, we start with the same assumptions as Davis
et al. [1999] in their proof-of-concept paper on MSL
observation of dense clouds: conservative scattering (sa = 0)
and uniform cloud (constant ss = s, and st). However,
rather than BCs with a source term, we use the more
accurate representation of the pulsed laser beam formalized
in (22), hence (35), as an exponential distribution of aniso-
tropic internal sources. Assuming a unit pulse (Ep = 1), we
must therefore solve

~F 0
z ¼ "s eð Þ

a s; kð Þ~J þ se" s=cþsð Þz;

~J 0=3 ¼ " 1" gð Þs~Fz þ gse" s=cþsð Þz: ð38Þ

Accordingly, we take ~q0(s, k) = 0 in the general BCs (36)–
(37) and set c = 2/3, leading to the Fourier-Laplace version
of (24):

~J þ 2~Fz

&

&

z¼0
¼ 0; ~J " 2~Fz

&

&

z¼H
¼ 0: ð39Þ

We anticipate dependence on both t and on g, not just on
(1 " g)t. Also notice that s enters the exponential source
term, as an effective sa, but k2/3st does not. This
transformed 3-D time-dependent problem is not formally
identical to a solar two-stream problem, at least when k 6¼ 0.
[43] Following the steps described in the previous sec-

tions, we find at zeroth-order

R ¼ 1" T ; T ¼ 5" e"t

3 1" gð Þt þ 4
; ð40Þ

i.e., the well-known expressions for cloud albedo R and
transmittance T for normal solar illumination and no
absorption [Meador and Weaver, 1980]. Higher-order terms
in k and s yield moments such as

hr2i=H2 ¼ 20

9

1

1" gð Þt + 1þ Cr;2 t; gð Þ
) *

hcti=H ¼ 5

3
+ 1þ Cct;1 t; gð Þ
) *

h ctð Þ2i=H2 ¼ 2

3
1" gð Þt + 1þ Cct;2 t; gð Þ

) *

h ctð Þ3i=H3 ¼ 4

7
1" gð Þt½ -2+ 1þ Cct;3 t; gð Þ

) *

: ð41Þ
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Note that the temporal statistics are now expressed as
moments of path ct in units of [length]q. In the above
relations, we also normalized all the moments with Hq(q =
1, 2, 3, as needed). Dependencies on cloud parameters on
the RHS can thus be expressed only with dimensionless
quantities: optical depth t = sH and g. In all cases, we give
explicitly the dominant term for large t and express the
remainder as a multiplicative correction term that goes to
unity (the Cs vanish) as t ! 1. This representation
emphasizes the fact that ratios of different moments (once
expressed in the same physical units) are not constants, a
remarkable property that is not found for transmitted light
[Davis and Marshak, 2002]. This feature is of vital
importance in MSL-based remote sensing and we can trace
it to the characteristically balanced mixture of low and high
orders of scattering in reflected light.
[44] It suffices here to say that the preasymptotic correc-

tions C%,q(t, g) have the form of rational functions of t and
g (also containing rapidly decaying terms in e"t) that
become increasingly complex as q increases. They all decay
slowly in 1/t as t ! 1. Complete expressions for the

above moments are supplied as auxiliary material1 in the
form of FORTRAN 77 code, and further details on their
derivation are provided by A. B. Davis et al. (Space-time
Green functions for diffusive radiation transport, in appli-
cation to active and passive cloud probing, submitted to
Light Scattering Reviews, 2008).
[45] As previously mentioned, a weakness of diffusion-

based radiation transport modeling is the smooth one-
parameter phase function in (15) whereas real-world phase
functions have prominent forward peaks [Deirmendjian,
1969]. We can partially mitigate this disconnect by applying
the classic d-Eddington rescaling [Joseph et al., 1976]. The
phase function is recast as a combination of a d function in
the forward direction (physically, just prolonged ballistic
propagation) and a complementary term with two spherical
harmonics. In the absence of absorption, this results in a
rescaling given by

s0 zð Þ ¼ 1" fð Þs zð Þ; 1" g0ð Þ ¼ 1" gð Þ= 1" fð Þ; ð42Þ

where f is the fraction of ‘‘d scattering.’’ This operation
decreases s ) ss (increases the MFP), but leaves st
invariant in (18). It therefore has no effect on Davis et al.’s
[1999] model since it depends only on tt = (1 " g)t = stH.
[46] A popular choice is f = g2 because it fits the spherical

harmonic coefficients of the Henyey and Greenstein [1941]
model phase function up to order 2, hence

g0 ¼ g " fð Þ= 1" fð Þ ¼ g= 1þ gð Þ: ð43Þ

For liquid clouds, where g # 0.85, we get s0 # 0.28s and
g0 # 0.46.
[47] Figure 2 shows the dependence of the four normalized

responses from (41) as functions of (1 " g)t = (1 " g0)t0

when g = 0.85 and g0 = 0.46 in log-log axes, using an RMS
format for the second-order moments in space and time, and
a 1/3 power for the third-order moment in path. Figure 2
also demonstrates the validity of the updated diffusion
model for its intended purpose (i.e., (1 " g)t ^ 1), and
especially when using the rescaling based on g0 in (43). This
validation is based on a comparison of the diffusion-
theoretical predictions in (41) with MC solutions of the
more general RT problem in (1)–(2). We note that the
preasymptotic corrections in (41) are clearly important,
especially for the higher-order moments of path ct and/or
when the g0 rescaling is not used. Finally, the importance of
using g0 rescaling in diffusion theory is underscored by the
violations of basic statistical inequalities (e.g., mean >
RMS) when g = 0.85 and t ] 10.

4.2. Cloud Property Retrievals

[48] We note that cloud albedo and transmittance in (40)
are available in lidar studies not only as the space/time
integral of the MSL signal, but also from the solar or lunar
background ‘‘signal’’ of well-calibrated lidar systems of any
ilk, at least during daytime. After conversion from radiance
to flux (or, better still, working with 1-D steady state
radiance models) and accounting for the slant incidence

Figure 2. Four flux-based cloud responses from (41).
Bottom to top on the RHS, we have

ffiffiffiffiffiffiffiffiffi

r2h i
p

/H, hcti/H,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ctð Þ2
D E

r

/H, and 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ctð Þ3
D E

r

/H, as functions of scaled

optical depth (1 " g)t (bottom axis) with their correspond-
ing asymptotes. The solid lines, for g = 0.85, are also given
as functions of t (top axis). The dashed lines are for g0 = g/
(1 + g) = 0.46 versus rescaled optical depth (1 " g0)t0, on
the bottom axis only. See main text for the use of the
similarity relation (1 " g)t = (1 " g0)t0, yielding t0 = t/3.6
in this situation. Validation data for the forward diffusion-
theoretical model are plotted with solid (g = 0.85) and open
(g0 = 0.46) symbols; they were obtained from MC
simulations using 107 histories with Henyey-Greenstein
scattering. All these cloud responses to laser illumination
are obtainable from MSL, subject to a radiance-to-flux
conversion with a reasonably good angular model.

1Auxiliary materials are available in the HTML. doi:10.1029/
2007JD009666.
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angle, they can be used to retrieve t. However, space-based
and airborne instruments depending on R [Platt et al., 1998;
Yang et al., 2008] will not be as sensitive as their ground-
based counterparts that use T [Chiu et al., 2007] when t is
large since @ln R/@lnt! 0 while j@lnT/@lntj ! 1 as t!1.
[49] Only higher-order MSL observables however give us

access to H and, furthermore, they can also deliver an
estimate of t, all of this without need for absolute calibra-
tion. From the cloud remote sensing perspective, we are
glad to see that, starting with the asymptotic trends in (41),
the four responses vary differently with t. By obtaining
from MSL observations any two of the four moments, we
can therefore infer the two targeted cloud properties, namely,
t (given g) and then H.
[50] In Figure 3, we demonstrate the basic principle using

the ratio hr2i/h(ct)2i, which is sensitive to scaled optical
depth (1 " g)t but apparently almost completely insensitive
to the specific choice of g itself (i.e., we can use either g or
g0 curves). Knowing t (since we can safely prescribe g,
hence g0), any one of the lidar moments will give us H by
comparing the prediction in (41) and its observed counter-

part. In Figure 3, we propose to use H/hcti which has the
desirable property of being quite insensitive to t, especially
if we use g0 rather than g. In this MSL cloud remote sensing
demo, we have propagated graphically an assumed uncer-
tainty of #17% on the second-order moment ratio, leading
to #13% on t and less than #1% on the factor that converts
hcti to H.
[51] We have described here only moment-based retrieval

methods in MSL observation of clouds. However, it is not
always possible to estimate accurately the required moments
from MSL data, say, due to an insufficiently large FOV
resulting in a truncation of the observed Green function’s
tail. In Part 2, we revisit the direct PDF-based methodology
of Polonsky et al. [2005] that overcomes this looming
instrumental problem.
[52] What is the spatial resolution of an MSL-inferred

cloud property? And what is the optimal spatial sampling?
The answers of such questions usually involve the exposure
time while the prevailing wind advects the cloud above a
ground-based sensor, the transmitted beam divergence and
platform velocity in airborne or satellite observations. It is
remarkable that here the answers depend more on the cloud
being observed. Indeed, by its very nature, the MSL signal
originates from the whole volume of the cloud as defined by
a horizontal area, say, a couple of times larger than phr2i. . .
which varies from cloud to cloud. We recall that the radius
of that circular area is known as the ‘‘radiative smoothing
scale’’ [Marshak et al., 1995], and it defines the minimum
pixel size at which passive cloud remote sensing can by
performed without too much risk of contamination by
adjacency effects. In MSL as well, any cloud structure
smaller than this is smoothed by the radiative diffusion
process. This smoothing scale also defines the minimum
sampling distance (or time interval) that one would want to
use in operational MSL observations. Anything faster
would mean overlap in the radiative Green functions being
measured, hence redundant cloud information. Anything
slower will combine into a single observation the Green
functions of cloud sectors that may have different physical
properties; we are then faced with a nonlinear subresolution
variability problem.
[53] If we absolutely had to set a specific value for the

MSL ‘‘footprint’’ and the sampling scale, we would look at
Figure 3 and note that

ffiffiffiffiffiffiffiffiffi

r2h i
p

is on the order of H, which is
typically O(1) km and, generally speaking, is the least
variable of the cloud parameters (at least within a given
cloudy layer); at the same time, its dependence on t is
relatively weak (a fluctuation over an order of magnitude
only yields a factor of #3). At any rate, MSL’s inherent
resolution is ideally suited for RT studies since smaller
fluctuations affect only the bulk transport and call for a
stochastic model (see below) while larger ones excite
‘‘adjacency’’ effects that call for a deterministic 3-D RT
approach.

5. Impact of Internal Cloud Structure on MSL
Observables
5.1. Stratification

[54] Stratiform clouds are expected to exhibit internal
stratification. For instance, in their ‘‘convective cores,’’
liquid water content is predicted and widely observed

Figure 3. Typical moment-based cloud remote sensing
algorithm with MSL. The bottom curves show the
nondimensional ratio of observable moments hr2i/h(ct)2i
as a function of rescaled cloud optical depth (1 " g)t for g =
0.85 and the related value of g0 = 0.46. Although not very
different, one of these curves is chosen and gives us t,
optionally, via scaled optical depth t0 (top axis). We then
use the corresponding prediction for H/hcti in the top curves
to determine cloud thickness H. The numerical example
uses rescaled g0 = 0.46 for a moment ratio of (3.0 ± 0.5)
10"2, yielding t # 34 ± 4 (12% uncertainty) and H #
(0.560 ± 0.005) + the mean in-cloud path hcti. Note that the
observational error on this first-order moment will very
likely dominate the #1% error on the multiplier (associated
with #12% on t, resulting itself from #17% on the second-
order moment ratio).
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[Pawlowska et al., 2000] to follow the adiabatic gradient, a
linear trend in z over the vertical extent of the cloud. This
classic result from the baseline parcel theory in cloud
microphysics (number density assumed constant) leads to
a 2/3 power law in extinction from straightforward dimen-
sional analysis. Formally, and depending on what side of the
cloud is being illuminated by the laser source, we can write
this as

s0 g; zð Þ ¼ s 1þ gð Þ z=Hð Þg ; or
sH g; zð Þ ¼ s 1þ gð Þ 1" z=Hð Þg ; ð44Þ

with g * 0 (in this case, 2/3) and s being the mean
extinction (obtained, say, from cloud optical depth t = sH).
[55] This stratification in s will directly affect the spatial

(9) and temporal (8) observables in MSL, even if it does not
affect the cloud’s albedo in (7). Indeed, the local value of
the MFP will be different at the top and bottom of the cloud
and, physically, this means that the random walk represent-
ing the diffusing light propagation is scaled up (near cloud
base) or down (near cloud top). Since MSL systems have
already probed clouds from both sides, and will continue to
do so, it is imperative to quantify the effect of stratification
on the observables.
[56] Now, because g is assumed constant, st(z) will have

the same behavior as s0,H(g; z). However, the vanishing
st(z) at either z = 0 (lidar below cloud) or z = H (lidar above
cloud) is problematic for the diffusion model. Indeed, the
BCs in (27) make necessary the evaluation of Fz(t, ~r, z) in
(20) for z = 0 and z = H, one of which contains a division by
st(z) = 0. Physically, the local transport MFP is divergent
and diffusion, as an approximation to RT, fails near one of
the cloud boundaries (symptomatically, the associated ex-
trapolation length is infinite).
[57] Instead of the troublesome power law model, we can

take

sD zð Þ ¼ s + 1þD z=H " 1=2ð Þ½ - ð45Þ

where jDj < 2 is the relative difference in extinction at the
two cloud boundaries with respect to the mean, and
similarly for st,D(z) using st = (1 " g)s. The least-squares
difference between the linear model in (45) and a given
power law in (44) is minimized by the choice

D gð Þ ¼ .6+ 2
g þ 1

g þ 2
" 1

$ %

ð46Þ

where + is mapped to s0(g; z) and " to sH(g; z). Values of
special interest areD = ±3/2 since they approximate g = 2/3,
the above-mentioned expectations based on parcel theory for
a cloud illuminated from below and above respectively.

[58] Ideally, we would like to extend the new collimated/
anisotropic internal source model to the case of internal
variability. However, the resulting ODE problem does not
appear to be analytically tractable. We therefore revert to the
isotropic boundary point source model used by Davis et al.
[1999]. We thus wish to solve both the space domain (s = 0)
problem of MSL,

~F 0 ¼ " k2=3st;D zð Þ
) *

~J ; ~J 0 ¼ "3st;D zð Þ ~F; ð47Þ

and its time domain (k = 0) counterpart,

~F 0 ¼ " s=cð Þ ~J ; ~J 0 ¼ "3st;D zð Þ ~F; ð48Þ

in both cases, subject to

~J " 3c~Fz

&

&

z¼0
¼ 4; ~J þ 3c~Fz

&

&

z¼H
¼ 0; ð49Þ

leaving c as an unspecified parameter. By inspection, we
see that nondimensional cloud responses can only depend
on D and tt = stH (and c). In contrast with the D = 0
[Davis et al., 1999; Love et al., 2001a], we will not have
similar behavior between s/c and k2/3st since they are
interchangeable in sa(e)(s, k) only when D = 0.
[59] Spatial and temporal moments are computed as

previously: (1) solve boundary value problem for coupled
ODEs; (2) obtain ~R(s, 0) from ~J (s, 0; z = 0), or ~R(0, k) from
~J (0, k; z = 0); (3) expand into a Taylor series of the desired
length in the variable of interest and extract the moments of
interest; and (4) translate result into a high-level program-
ming language for easy manipulation and plotting. A
computer-assisted algebra tool is highly recommended for
all of the above steps.
[60] As it turns out, the Fourier domain (spatial) diffusion

problem in (47) and (49) for ~J (0, k; z) is solvable in terms of
order-zero and order-one modified Bessel functions of the
first and second kinds. The Laplace domain (temporal)
diffusion problem in (48) and (49) for ~J (s, 0; z) is solvable
in terms of Airy functions and their derivatives, which are
related to modified Bessel functions with 1/3-integer orders.
At zeroth order, we retrieve (using L’Hôpital’s rule)

R ¼ 1" T ; T ¼ 1

1þ tt=2c
; ð50Þ

the well-known [Schuster, 1905; Meador and Weaver,
1980] expression for cloud transmittance T for diffuse
illumination in the absence of absorption, and cloud albedo
R. As expected, they are not sensitive to internal structure
since optical properties v0 and g are held constant. For
MSL observables proper, higher-order terms in k and s yield

hr2i=H2 ¼ c
2þDð Þ4 ln 2þDð Þ= 2"Dð Þ½ - " 4D 4þD 8þDð Þð Þ

8D3

1

tt
+ % % % ;

hcti=H ¼ c
40þD 10þDð Þ

20
+ % % % ;

h ctð Þ2i=H2 ¼ c
320þD 80"D 20þD 10þDð Þð Þð Þ

400
tt + % % % ;

ð51Þ
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where we have to envision the preasymptotic correction
terms in 1 + C%,q(tt/2c, D). Davis et al. (submitted
manuscript, 2008) provide further details on the derivation
of these expressions, while FORTRAN 77 code for
computing them can be found in the auxiliary material.
All the prefactors we have highlighted here revert to those
by Love et al. [2001a], equations (9)–(11) when D ! 0.
[61] Figure 4 illustrates the outcome of the above diffu-

sion-based models. We examine specifically the case tt =
8.1 (e.g., t = 54 when g = 0.85) and set c = 2/3. Results
from MC simulations for linearly stratified clouds with t =
15 are also plotted for validation purposes, hence using an
isotropic boundary point source and the Henyey-Greenstein
phase function with g = 0.46. Two MC simulations were
also run using the ‘‘g = 2/3’’ power law model for s(z)
starting at z = 0 (mapped to D = +3/2) and z = H
(corresponding toD = "3/2). There is hardly any difference
in these MC predictions for all three moments, and we
already know there is none at all for g = 0 and 1 (related
respectively to D = 0, ±2).

[62] Overall, the diffusion results are just slightly offset
from their MC counterparts. The most remarkable differ-
ence between diffusion and MC is the logarithmic diver-
gence of hr2i at D ! 2" that is manifest in (51). All is as if
the effective diffusivity constant hr2i/hti, as observed by
MSL at the cloud boundary, becomes infinite with the value
of the transport MFP at z = 0, namely, ‘t(0) = 1/st(1 " D/2).
As stated above, diverging ‘t is clearly a challenge for the
diffusion model since trajectories become ballistic, and
apparently more so when this occurs near the source. This
problem could probably be fixed by introducing a param-
eterization c(D) where c ! 0 as D ! 2".
[63] We also note in the log-lin plot that the MC results

for hcti and hr2i1/2 are quasi-linear in D over its full range.
This is especially good for spatially resolved MSL obser-
vations from ground (D > 0) since, instead of the diffusion
model per se, one can use a log-linear extrapolation from
the log sensitivity of these moments toD evaluated atD = 0.
Specifically, we propose to use

@

@D
ln

ffiffiffiffiffiffiffiffiffi

hr2i
p

&

&

&

&

D¼0

¼ @

@D
lnhcti

&

&

&

&

D¼0

¼ X 1þ Xð Þ
3þ 6X þ 4X 2

; ð52Þ

where X = tt/2c, as a simple way of capturing the effect of
stratification. For h(ct)2i however, it is best to use the
detailed expression from the auxiliary material. In all cases,
one can use the required moment value at D = 0 from a
more accurate model (e.g., from the previous section), or
even a tabulated MC result; that hybrid approach should
further reduce any bias.

5.2. Random Variability

[64] Barker and Davis [2005] showed that there are two
broad classes of models in 3-D RT that go after the large-
scale effects of unresolved small-scale variability in cloud
structure, which is invariably assumed random. Members of
one class of mean field theory end with new transport
equations to solve. Members of the other class pursue
homogenization: redefine coefficients in 1-D RT so that
the known solutions of that problem capture the main 3-D
effects, which is clearly the path of least resistance. Among
these ‘‘effective medium’’ approaches to random 3-D var-
iability, we favor the rescaling technique by Cairns et al.
[2000]. Although it is a one-parameter solution, it stems
from a careful renormalization treatment of both one- and
two-point statistics, i.e., the PDF of s(r) and its autocorre-
lation function respectively.
[65] Starting with the d-rescaled (primed) quantities in (42)

that account for problematic forward scattering peaks, we have:

s00 zð Þ ¼ 1" !ð Þs0 zð Þ; 1" g00ð Þ ¼ 1" g0ð Þ 1" != 1" !ð Þ½ -; ð53Þ

in the case of conservative scattering, where ! is the
variability parameter. While d rescaling leaves the product
(1 " g)s invariant, it decreases here both through s and
through 1 " g as ! increases (since g00 > g0).
[66] Letting overscores denote averages over the spatial

disorder, Cairns et al. show specifically that for moderate-
amplitude 3-D effects one has

! ¼ a"
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 " V
p

ð54Þ

Figure 4. Modeling stratification inside plane-parallel
clouds. The solid lines are the diffusion predictions for
the three moments in (51), normalized to H = 1, plotted
against the relative gradient parameter D = [s(z = H) "
s(z = 0)]/s where z = 0 defines the illuminated/observed
cloud boundary. Since extinction generally increases with
altitude, D > 0 applies to ground-based MSL while D < 0
applies space-based MSL (or airborne, from above the cloud
deck). The assumed cloud has tt = (1 " g)t = 8.1. The
source term for the ODE problem is expressed in the BCs,
which use c = 2/3. Open symbols are from nine MC runs
over the range of D at 0.5 increments, each using 2 107

histories with g = 0.46 Henyey-Greenstein scattering. All of
this is for the linear-trend model in (45). Crosses are for the
more attractive power law models in (44) with g = 2/3,
using the least-squares connection in (46) to position them
on the ±D axes, namely, g(D) = 2jDj/(6 " jDj). There is
hardly any difference in any moment for the nontrivial cases
at D = ±3/2.
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where V = s2/s2 " 1 (variance relative to mean-squared)
and 2a = 1 + 1/slc. We denote here the characteristic
correlation scale of the spatial variability by lc. We see that
small-scale fluctuations, i.e., when lc / MFP # 1/s, have
little effect since ! # 2V/(2a)2 z 1 (irrespective of V) as a
becomes very large. Large-scale fluctuations (slc ^ 1) can
have a strong impact (! ] 1); however, this stretches the
validity of the model (in particular, amplitude is then limited
to cases where V 0 a2 ] 1). For very large-scale
fluctuations (slc 1 1, hence a # 1/2, hence V ] 1/4), it
is clear that one should average over macroscopic MSL
responses rather than try to find an effective medium to
account for variability effects in the spirit of an Independent
Pixel Approximation [e.g.][and references therein Barker
and Davis, 2005]. That is precisely how Davis and Marshak
[2002] approached the problem of spatial variability:
following Barker [1996], they averaged expressions similar
to those in (41), but for transmission, over a Gamma
distribution of s values.
[67] The above scale-by-scale breakdown of spatial var-

iability impacts is consistent with the first-principles anal-
ysis by Davis and Marshak [2004] who, incidentally, show
that the actual MFP is 1=s in a broad class in variable media,
and this always exceeds 1/s (they are equal only when s is
uniform).

6. Signals and Noises in Multiple-Scattering
Cloud Lidar
6.1. Signal-to-Noise Ratio Estimation

[68] Before we consider the use of MSL data for cloud
remote sensing purposes, it is standard procedure to eval-
uate the typical signal as realistically possible given the
specifications of actual or proposed instruments. At the
same time it is important to quantify all foreseeable sources
of noise and, from there, estimate a priori the signal-to-noise
ratio (SNR). The main purposes of such exercises are to test
ideas in instrument design as well as to experiment with
different sampling strategies for observations, in this case,
of different types of cloud.
[69] We now illustrate this key modeling application of

the above theoretical results for MSL observables. In this
demonstration, we will focus on two specific MSL systems
that probe clouds from either side:
[70] 1. The Wide-Angle Imaging Lidar (WAIL) is a

ground-based design developed at Los Alamos National

Laboratory. It has already been deployed several times in
New Mexico [Love et al., 2001a, 2001b] and once in
Oklahoma [Polonsky et al., 2005]. Yet the current engineer-
ing model is still being refined and we will use here
parameters for so-far untested hardware.
[71] 2. The Lidar-in-space Technology Experiment

(LITE) was the first demonstration of space-based lidar
conducted, largely from NASA’s Langley Research Center,
as a payload in the cargo bay of Space Shuttle Discovery
during flight STS-64 [Winker et al., 1996]. This mission
was flown 9–20 September 1994, and was considered a
vast success that indeed blazed the path for current and
future lidar satellite missions, including NASA’s ICESat/
GLAS and CALIPSO/CALIOP.
[72] We use the same cloud in both cases: a typical

boundary layer stratus deck at 0.7 km altitude, with H =
0.5 km, t = 25, and g = 0.85. Table 1 summarizes all the
intermediate time-dependent 3-D RT modeling results lead-
ing to the temporally, spatially and angularly averaged
radiance excited by the pulsed laser illumination that
escapes the illuminated/observed cloud boundary. We esti-
mate this basic quantity from

Iobs #
R=p

phr2ihti ; ð55Þ

and it will be expressed in its natural radiometric units,
namely, photons per laser photon, per unit of aperture area,
per steradian of FOV, and per unit of exposure time. At
sufficient accuracy, this is also the radiance detected across
(essentially empty) space by the MSL receiver.
[73] Standoff distances dobs are of course very different:

0.7 km for WAIL, #259 km for LITE. The next question is
what solid angle and viewing angle are subtended by the
#phr2i circular area of the observed radiative Green
function. This ‘‘adapted’’ solid angle is given by

dWGf dobsð Þ ¼ 2p
d2obs=hr2iþ 1

¼ 2p 1" cos qGfð Þ: ð56Þ

The corresponding adapted viewing angle qGf(dobs) is 45.5!
for WAIL and 0.06! (#1 mrad) for LITE. Ideally, one wants
the MSL instrument’s FOV (2 + qmax) to be at least this
large, and not too much more. Say, tanqmax # 2 to 3 times

Table 1. Properties of a Cloud With H = 0.5 km Probed by MSL From Both Sides in Table 2

Quantity Symbol Unit Given d-Scaled Cairns-3D Above Below

Parameter of interest D f ! D D
Parameter value ["] 0 0.72 0.15 "1.5 +1.5

Cloud Optical Properties
Optical depth t ["] 25 6.94 5.89
Asymmetry factor g ["] 0.85 0.46 0.56
Scaled optical depth (1 " g)t ["] 3.75 3.75 2.62

Cloud Radiative Responses
Albedo R ["] 0.67 0.67 0.58
Mean in-cloud path hcti km 1.04 0.91 0.99 0.74 1.32

RMS lateral transfer
ffiffiffiffiffiffiffiffiffi

r2h i
p

km 0.30 0.28 0.34 0.26 0.46
Average MSL radiance equation (55) photon

s%m2 %sr% laser photonð Þ 0.22 0.29 0.15 0.36 0.063
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hr2i1/2/dobs. Indeed, the observed radiance field is con-
centrated in this region of direction space. As it turns out,
LITE satisfies this constraint and WAIL almost does. If
that were not the case, qmax too small means loss of signal
while too big adds little signal in view of its exponential
decay in space (only more background noise is collected).
[74] Table 2 lists the relevant transmitter and receiver

parameters for LITE (as flown) and WAIL (new/untested
configuration). To illustrate SNR estimation we focus on the
temporal aspect of MSL, which is the only one LITE could
access in detail. We therefore seek an expression for the
number of ‘‘photon counts’’ Sdct(Dt) registered in a typical
path length bin of size dct when integrating MSL signal
over all of space but only a given time interval Dt. For the
average time-dependent radiance in (55), basic radiometry
gives us

Sdct Dtð Þ # OTp+ hl

+ Ep

hc=l
+ Iobs

$ %

+ A+ U1R to Fð Þ + dct
+ RepRate+Dtð Þ ð57Þ

in photon counts, where U1R_to_F = psin2qmax = p(1 "
cos2qmax)/2 is the proper conversion-to-flux factor for a
uniform distribution in direction space of unitary radiance.
This quantity is used in lieu of the usual expression dWFOV =
2p(1 " cosqmax), a somewhat larger value (see Table 2).
This substitution is necessary in MSL studies because the
FOV can be very large indeed. The last term in parentheses
is just the total number of pulses used. Other new symbols
are defined in Table 2 where values for LITE and WAIL are
listed. In particular, we note that étendue (A + U1R_to_F),
which appears in (57), is commensurate in both systems in
spite of their huge difference in bulk (as measured, say, by
aperture area A).
[75] Next, we estimate the noise level in the same units

(photon counts). For an ideal MSL system operating on a
moonless night, the only source of noise is the inherent
Poisson randomness of photon arrivals, a.k.a. ‘‘shot’’ noise;
its RMS value is simply

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sdct Dtð Þ
p

. Real optical instru-
ments of course have an irreducible source of noise, a.k.a.
‘‘dark current’’ (fluctuations), from its electronics that is
present even when there is no light. We will not concern
ourselves with it here beyond this mention; it should be the
smallest component anyway. The third and last source of
noise is the steady ambient light, i.e., the solar or lunar
background. In view of its Poissonian nature, its mean and/
or variance is estimated (in counts) from

BG Dtð Þ # OTp+ hl

+ Tdif m0ð Þ + m0F0l=p
hc=l

$ %

+ A+ U1R to Fð Þ
+ Dt +Dlð Þ; ð58Þ

where Dl is the width of the background suppression filter
(see Table 2), m0 is the cosine of the solar/lunar zenith angle,
Tdif(m0) is cloud’s diffuse transmittivity to the ground (but
we use the cloud’s reflectivity R(m0) if the MSL is above it),
and F0l is the solar/lunar spectral flux incident on the top of
the atmosphere. For the solar background, we have F0l =
1.869 W/m2/nm at l = 532 nm [American Society for
Testing and Materials, 2000]. For the nighttime counterpart,
the Moon is assumed to be a Lambertian reflector (albedo
0.12) subtending 320 of arc (solid angle modulated by phase
angle) receiving the same irradiation.
[76] Being three independent sources of noise, their

variances are additive, and total RMS noise amplitude is

Ndct Dtð Þ #
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sdct Dtð Þ þ BG Dtð Þ þ electronics
p

; ð59Þ

where the last term is to be expressed in ‘‘equivalent
counts.’’
[77] The last subtlety to consider in MSL time domain

SNR estimation is that WAIL’s current detector (an inten-
sified/gated CCD camera) visits each time/path bin sequen-
tially to cumulate signal. In contrast, LITE (as most other
lidars) acquire signal for all its time bins at once. This
means that for WAIL the total number of laser pulses
(RepRate + Dt) in the overall integration time must be
divided among a relatively large number of separate bins.

Table 2. Specifications for Two MSL Systems and Expected
SNRs

Quantity Symbol Unit LITE WAIL

Standoff distance dobs km 259 0.7
Equation (56) dWGf sr 4 10"6 1.8
‘‘Adapted’’ FOVa 2qGf deg 0.06 91

Transmitter Parameters
Wavelength l nm 532 532
Power = Ep +
RepRate

P W 5 5

Pulse frequency RepRate Hz 10 12 103

Pulse energy Ep mJ 500 0.42
Photons per pulse Epl/hc ["] 1.34 1018 1.12 1015

Receiver Parameters
Optical throughput OTp % 45b 70
Quantum efficiency hl % 14 70
Aperture area
(effective)

A m2 0.63 10"5

FOV (full width)a 2qmax deg 0.20 88

dWFOV/U1R_to_F
2 1"cos qmaxð Þ
1"cos 2qmaxð Þ=2 ["] 1 + 3 10"6 1.163

Étendue A + U1R_to_F m2 % sr 6 10"6 15.5 10"6

Filter bandpass Dl nm 0.35 50

Sampling and Averaging
Path bin size dct m 10 10
Integration time Dt s 0.1 300
Number of pulses Np ["] 1 3.6 106c

Predictions
Signal Sdct(Dt) counts 2721b 341 103

Only shot noise SNRnight ["] 78 584
+ lunar background SNR+moon ["] 38 19
+ solar background SNRdaytime ["] 4.3 10"2 2.6 10"2

aThis happens to be slightly more (WAIL) or, as recommended in the
main text, somewhat smaller (LITE) than the actual FOV 2qFOV.

bNighttime value for LITE; daytime value is 20%, which affects equally
signal and background, hence an SNR decrease by

ffiffiffiffiffiffiffiffiffiffiffiffi

20=45
p

# 0.67
accounted for in the tabulated value in the last row.

cAs explained in text, this pulse budget is distributed equally among path
bins; assuming 272 bins, Np = 3.6 106/272 # 13.2 103/bin (an integration
over 1.1 s per bin).
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We will assume that there are just enough bins, each dt
wide, to cover 3 + t? where

t? ¼ H=cð Þ + 1" gð Þt
3 pRð Þ2

; ð60Þ

is the exponential decay rate of the Green function in time
[Polonsky and Davis, 2004, or Part 2], with R being
obtained from (1 " g)t in (50) with c = 2/3. For the cloud
of present interest, we find ct # 0.85 km in units of path.
This rationale leads to 272 time bins, and Dt is set to 5 min
(300 s, 3.6 106 pulses), which is basically enough for
!1.5 km of cloud to advect by at nominal wind speeds
(!5 m/s). This is not far from optimal since any faster
sampling of the radiative Green function would have
overlap due to the horizontal transport. In contrast, LITE
is moving along its orbit at 7 km/s. In this case, we want to
get signal from every pulse, hence Dt = 1/RepRate = 0.1 s.

6.2. Discussion

[78] The last three rows of Table 2 give

SNR ¼ Sdct Dtð Þ =Ndct Dtð Þ ð61Þ

for the two MSL systems (neglecting electronic noise)
under three scenarios: moonless night, moon present, and
daytime.
[79] In the last two situations, we need to compute F =

Tdif, R, for which it suffices to use predictions from two-
stream theory [Meador and Weaver, 1980] for the given
cloud (after d-Eddington and Cairns rescalings). We take
m0 = 0.5 for WAIL and cos 51! for LITE. This last value is for
the actual zenith angle of the moon at 6:53 GMT on 9/16/94
viewed from 36!N by 128.6!W, which is approximately
when and where the LITE data analyzed in Part 2 was
captured during nighttime orbit # 135 (the moon was 87%
full). For WAIL, we assume an average solar/lunar zenith
angle (and, worst case scenario, a full lunar disk).
[80] We conclude from these SNR estimates that the two

radically different MSL systems have and will perform well
at night, even with a full moon. However, daytime operation
remains a challenge: the SNR must be boosted by at least
!103, and increasing Dt by 106 is clearly not an option.
Current plans at LANL for the WAIL project [Love et al.,
2001b] involve an ultranarrow (Dl # 5 pm) magneto-optic
(a.k.a. Faraday) filter centered on one of the sodium lines in
its strong doublet near 589 nm, where the sun (F0l) is
already about 20+ dimmer than at nearby wavelengths.
Contrary to interference-based monochromators, such filters
have a very wide acceptance angle, which is critical to the
present application. Even factoring in that lF0l is somewhat
larger at 589 nm than at 532 nm, we are close to our goal.
However, a sufficiently stable and powerful tunable laser is
required to utilize this sophisticated background rejection
technique.
[81] Another approach altogether is to complement oper-

ational MSL systems with high-resolution oxygen A-band
spectrometers, a passive technique in the solar spectrum.
The main products of these instruments for cloudy skies are
indeed the successive moments of path length [Pfeilsticker
et al., 1998;Min and Harrison, 1999], i.e., h(ct)qi, q = 1, 2, 3

(maybe more). All time-only cloud MSL remote sensing
techniques are therefore amenable to these data. It is
important to keep this in mind when NASA launches in
late 2008 the first high-resolution oxygen A-band spectrom-
eter into space on the Orbiting Carbon Observatory (OCO)
mission [Crisp et al., 2004].

7. Summary

[82] We have considerably refined the diffusion-theoretic
forward model for predicting space-time signals from mul-
tiple-scattering cloud lidar. More precisely, we targeted
moments of the observable space-time Green function as
expressions of the cloud’s physical thickness H and optical
depth t (considered as the remote sensing unknowns), and
the asymmetry factor g of the scattering phase function. In
the original model by [Davis et al., 1999], moments
(normalized by H) were only functions of scaled optical
depth (1 " g)t. We have added to that capability (1)
accurate representation of the pulsed laser source as a
collimated anisotropic exponentially decaying spatial distri-
bution of internal sources, and consequently separation of
the (smooth) scattered and (singular) uncollided compo-
nents of radiance; (2) d-Eddington rescaling (that preserves
(1 " g)t) further improves the above refinement by partially
accounting for the strong forward scattering peak in the
phase functions of observed cloud droplet populations
(since normalized moments are now functions of t and
g); (3) parameterization of the impacts of internal cloud
stratification using an analytically tractable model to com-
pute the sensitivity of moments to a constant gradient in
extinction s(z) / 1 + D + (z/H " 1/2); (4) use of the above
linear gradient model to mimic the more relevant case of
power law behavior, as an important instance, extinction
increasing as a 2/3 power from cloud base is mapped to D =
2[s(H) " s(0)]/[s(H) + s(0)] = ±3/2; and (5) Cairns et al.
[2000] rescaling that changes t and g (without conserving
(1 " g)t), which defines an effective optical medium that
captures the systematic effects on space-time cloud
responses of turbulence-driven random internal variability
at scales up to a few mean free paths. All but the last item
received at least limited validation by comparison with
Monte Carlo simulations. Items 3–4 are critically important
as one switches between illumination/observation of the
cloud from below (ground-based probes) and from above
(airborne or space-based systems).
[83] This effort brings the diffusion modeling project to a

state of balance between formal sophistication and practical
utility. The main drivers for this development are (1)
physical insights gained from a PDE-based approach, (2)
accuracy sufficient for applications in instrument and/or
algorithm design, (3) flexibility in the representation of
cloud structure as well as of radiation sources and sinks,
and (4) extreme computational efficiency of analytical
methods that enables real-time data processing when and
where multiple-scattering cloud lidars will be deployed
operationally on ground or in space.
[84] As an example of activity in algorithm design, the

refined model’s features are showcased with a demonstra-
tion of how H and t, hence extinction s = t/H, can be
derived from multiple-scattering cloud lidar data of suffi-
cient quantity and quality to estimate selected moments
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reliably. The retrieved cloud properties are representative of
large-volume averages, on the order of H3/(1 " g)t.
[85] As an example of activity in instrument design, the

improved diffusion model is applied to signal-to-noise ratio
(SNR) estimations for two very different multiple-scattering
lidar systems. SNR is computed a priori for a new, so far
untested, configuration of LANL’s Wide-Angle Imaging
Lidar (WAIL); it is also computed a posteriori for NASA’s
Lidar-In-space Technology Experiment (LITE). Part 2 of
this series (Davis et al., manuscript in preparation, 2008)
will demonstrate innovative ways of extracting cloud prop-
erties from real data collected with these two systems, and
compare their outcome with available cloud information
from other sources.
[86] If even more realistic representations of the scatter-

ing phase function and/or 3-D cloud structure are needed in
the applications, without paying too high a price in CPU
cycles, then one should turn to ultraefficient numerical
techniques. For instance, data exploitation in the two
airborne multiple-scattering cloud lidar systems in existence
use (1) a neural network trained with one-time 3-D Monte
Carlo runs [Evans et al., 2003, 2006] and (2) a multidimen-
sional look-up table populated with one-time 1-D Monte
Carlo runs [Cahalan et al., 2005]. Another promising ap-
proach, which is more closely related to the present diffusion
model, would use the rapid numerical time-dependent two-
stream solver developed recently by Hogan and Battaglia
[2008]. In particular, its representation of the pulsed laser
source uses a small-angle multiple forward scattering model
by Hogan [2008] that is of practical interest in its own right
for processing (on- or near-beam) lidar data from optically
thin clouds and optically thick aerosol layers. Although
designed for probing dense clouds, deployed multiple-
scattering lidar systems will continue to collect data under
such semiclear skies. It will be interesting to see what added
value they can contribute to aerosol and cirrus studies.
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